Dynamical systems, attractors, and neural circuits
نویسنده
چکیده
Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.
منابع مشابه
New Encyclopedia of Neuroscience
Synopsis. The term ‘attractor’, when applied to neural circuits, refers to dynamical states of neural populations that are self-sustained and stable against perturbations. It is part of the vocabulary for describing neurons or neural networks as dynamical systems. This concept helps to quantitatively describe self-organized spatiotemporal neuronal firing patterns in a circuit, during spontaneou...
متن کاملPrevalence of Milnor Attractors and Chaotic Itinerancy in ’High’-dimensional Dynamical Systems
Dominance of Milnor attractors in high-dimensional dynamical systems is reviewed, with the use of globally coupled maps. From numerical simulations, the threshold number of degrees of freedom for such prevalence of Milnor attractors is suggested to be 5 ∼ 10, which is also estimated from an argument of combinatorial explosion of basin boundaries. Chaotic itinerancy is revisited from the viewpoi...
متن کاملCoexistence of Four Different Attractors in a Fundamental Power System Model - Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on
This paper reports the occurrence of a rare phenomenon in dynamical systems when four different attractors namely a stable equilibrium, a stable limit cycle and two strange attractors coexist in a fundamental power system model. The paper shows that power system operation could get trapped into sustained chaotic oscillations after a large disturbance even when there exists a viable stable equil...
متن کاملPROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کاملAnalysis of stochastic attractors for population dynamical systems with environmental noise
ABSTRACT. We study stochastic attractors of nonlinear dynamical systems modeling population dynamics. For the approximation of probabilistic characteristics of these attractors, constructive computational methods based on stochastic sensitivity functions technique are suggested. Applications of these methods for analysis of the noise-induced effects in a model of population dynamics are demonst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016